BILANGAN BINER




Biner adalah sistem nomor yang digunakan oleh perangkat digital seperti komputer, pemutar cd, dll Biner berbasis 2, tidak seperti menghitung sistem desimal yang Basis 10 (desimal).
Dengan kata lain, Biner hanya memiliki 2 angka yang berbeda (0 dan 1) untuk menunjukkan nilai, tidak seperti Desimal yang memiliki 10 angka (0,1,2,3,4,5,6,7,8 dan 9).
Contoh dari bilangan biner: 10011100
Seperti yang anda lihat itu hanya sekelompok nol dan yang, ada 8 angka dan angka-angka tersebut adalah bilangan biner 8 bit. Bit adalah singkatan dari Binary Digit, dan angka masing-masing digolongkan sebagai bit.
  • Bit di paling kanan, angka 0, dikenal sebagai Least Significant Bit (LSB).
  • Bit di paling kiri, angka 1, dikenal sebagai bit paling signifikan (Most significant bit = MSB)
notasi yang digunakan dalam sistem digital:
  • 4 bits = Nibble
  • 8 bits = Byte
  • 16 bits = Word
  • 32 bits = Double word
  • 64 bits = Quad Word (or paragraph)
Saat menulis bilangan biner Anda perlu menandakan bahwa nomor biner (basis 2), misalnya, kita mengambil nilai 101, akan sulit untuk menentukan apakah itu suatu nilai biner atau desimal (desimal). Untuk menyiasati masalah ini adalah secara umum untuk menunjukkan dasar yang dimiliki nomor, dengan menulis nilai dasar dengan nomor, misalnya:
1012 adalah angka biner dan 10110 i adalah nilai decimal (denary.
Setelah kita mengetahui dasar maka mudah untuk bekerja keluar nilai, misalnya:
1012 = 1*22 + 0*21 + 1*20 = 5 (Lima)
10110 = 1*102 + 0*101 + 1*100 = 101 (seratus satu)
Satu hal lain tentang bilangan biner adalah bahwa adalah umum untuk menandai nilai biner negatif dengan menempatkan 1 (satu) di sisi kiri (bit yang paling signifikan) dari nilai. Hal ini disebut tanda bit, kita akan membahas hal ini secara lebih rinci pada bagian selanjutnya dari tutorial.
Nomor elektronik biner disimpan / diproses menggunakan off atau pulsa elektrik, sistem digital akan menafsirkan Off  dan On di setiap proses sebagai 0 dan 1. Dengan kata lain jika tegangan rendah maka akan mewakili 0 (off), dan jika tegangan yang tinggi akan mewakili 1 (On).
Konversi biner ke desimal Untuk mengkonversi biner ke desimal adalah sangat sederhana dan dapat dilakukan seperti yang ditunjukkan di bawah ini:
Misalkan kita ingin mengkonversi nilai 8 bit 10011101 menjadi nilai desimal, kita dapat menggunakan rumus seperti di bawah ini bahwa:
128
64
32
16
8
4
2
1
1
0
0
1
1
1
0
1
Seperti yang Anda lihat, kita telah menempatkan angka 1, 2, 4, 8, 16, 32, 64, 128 (pangkat dua) dalam urutan numerik terbalik, dan kemudian ditulis nilai biner di bawah ini.
Untuk mengkonversi, Anda hanya mengambil nilai dari baris atas di mana ada angka 1 di bawah, dan kemudian menambahkan nilai-nilai tersebut bersamaan.
Misalnya, dalam contoh, kta akan menjumlahkan angka pada baris atas yang diwakili oleh angka 1 dibawah maka dijumlahkan seperti ini :
128 + 16 + 8 + 4 + 1 = 157.
Untuk nilai 16 bit Anda akan menggunakan nilai desimal 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 (Pangkat dua) untuk konversi .
Karena kita tahu biner adalah basis 2 maka angka di atas dapat ditulis sebagai berikut :
1*27 + 0*26 + 0*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*20 = 157.
Konversi desimal ke biner
Untuk mengubah desimal ke biner juga sangat sederhana, Anda hanya membagi nilai desimal dengan 2 dan kemudian menuliskan sisanya, ulangi proses ini sampai Anda tidak bisa membagi dengan 2 lagi, misalnya mari kita mengambil nilai desimal 157:
  • 157 ÷ 2 = 78          dengan sisa 1
  • 78 ÷ 2 = 39            dengan sisa 0
  • 39 ÷ 2 = 19            dengan sisa 1
  • 19 ÷ 2 = 9               dengan sisa 1
  • 9 ÷ 2 = 4                 dengan sisa 1
  • 4 ÷ 2 = 2                 dengan sisa 0
  • 2 ÷ 2 = 1                 dengan sisa 0
  • 1 ÷ 2 = 0                 dengan sisa 1
Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst
[sunting] Perhitungan
Desimal
Biner (8 bit)
0
0000 0000
1
0000 0001
2
0000 0010
3
0000 0011
4
0000 0100
5
0000 0101
6
0000 0110
7
0000 0111
8
0000 1000
9
0000 1001
10
0000 1010
11
0000 1011
12
0000 1100
13
0000 1101
14
0000 1110
15
0000 1111
16
0001 0000
Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.
contoh: mengubah bilangan desimal menjadi biner
desimal = 10.
berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut
10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).
dari perhitungan di atas bilangan biner dari 10 adalah 1010
dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (1 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010
atau dengan cara yang singkat
10:2=5(0),
5:2=2(1),
2:2=1(0),
1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010

Bilangan Biner

Bilangan Biner
Sebagai contoh dari bilangan desimal, untuk angka 157:
157(10) = (1 x 100) + (5 x 10) + (7 x 1)
Perhatikan! bilangan desimal ini sering juga disebut basis 10. Hal ini dikarenakan perpangkatan 10 yang didapat dari 100, 101, 102, dst.

Mengenal Konsep Bilangan Biner dan Desimal
Perbedaan mendasar dari metoda biner dan desimal adalah berkenaan dengan basis. Jika desimal berbasis 10 (X10) berpangkatkan 10x, maka untuk bilangan biner berbasiskan 2 (X2) menggunakan perpangkatan 2x. Sederhananya perhatikan contoh di bawah ini!
Untuk Desimal:
14(10) = (1 x 101) + (4 x 100)
= 10 + 4
= 14
Untuk Biner:
1110(2) = (1 x 23) + (1 x 22) + (1 x 21) + (0 x 20)
= 8 + 4 + 2 + 0
= 14
Bentuk umum dari bilangan biner dan bilangan desimal adalah :
Biner
1
1
1
1
1
1
1
1
11111111
Desimal
128
64
32
16
8
4
2
1
255
Pangkat
27
26
25
24
23
22
21
20
X1-7
Sekarang kita balik lagi ke contoh soal di atas! Darimana kita dapatkan angka desimal 14(10) menjadi angka biner 1110(2)?
Mari kita lihat lagi pada bentuk umumnya!
Biner
0
0
0
0
1
1
1
0
00001110
Desimal
0
0
0
0
8
4
2
0
14
                       Pangkat
27
26
25
24
23
22
21
20
X1-7
Mari kita telusuri perlahan-lahan!
  • Pertama sekali, kita jumlahkan angka pada desimal sehingga menjadi 14. anda lihat angka-angka yang menghasilkan angka 14 adalah 8, 4, dan 2!
  • Untuk angka-angka yang membentuk angka 14 (lihat angka yang diarsir), diberi tanda biner “1”, selebihnya diberi tanda “0”.
  • Sehingga kalau dibaca dari kanan, angka desimal 14 akan menjadi 00001110 (terkadang dibaca 1110) pada angka biner nya.
Mengubah Angka Biner ke Desimal
Perhatikan contoh!
1. 11001101(2)
Biner
1
1
0
0
1
1
0
1
11001101
Desimal
128
64
0
0
8
4
0
1
205
Pangkat
27
26
25
24
23
22
21
20
X1-7
Note:
  • Angka desimal 205 didapat dari penjumlahan angka yang di arsir (128+64+8+4+1)
  • Setiap biner yang bertanda “1” akan dihitung, sementara biner yang bertanda “0” tidak dihitung, alias “0” juga.
2. 00111100(2)
Biner
0
0
1
1
1
1
0
0
00111100
0
0
0
32
16
8
4
0
0
60
Pangkat
27
26
25
24
23
22
21
20
X1-7
Mengubah Angka Desimal ke Biner
Untuk mengubah angka desimal menjadi angka biner digunakan metode pembagian dengan angka 2 sambil memperhatikan sisanya.
Perhatikan contohnya!
1. 205(10)
205   : 2     = 102 sisa 1
102   : 2     = 51 sisa 0
51     : 2     = 25 sisa 1
25     : 2     = 12 sisa 1
12     : 2     = 6    sisa 0
6       : 2     = 3    sisa 0
3       : 2     = 1    sisa 1
1  Ć  sebagai sisa akhir “1”
Note:
Untuk menuliskan notasi binernya, pembacaan dilakukan dari bawah yang berarti 11001101(2)
2. 60(10)
60     : 2     = 30 sisa 0
30     : 2     = 15 sisa 0
15     : 2     = 7    sisa 1
7       : 2     = 3    sisa 1
3       : 2     = 1    sisa 1
1   Ć  sebagai sisa akhir “1”
Note:
Dibaca dari bawah menjadi 111100(2) atau lazimnya dituliskan dengan 00111100(2). Ingat bentuk umumnnya mengacu untuk 8 digit! Kalau 111100 (ini 6 digit) menjadi 00111100 (ini sudah 8 digit).

Aritmatika Biner
Pada bagian ini akan membahas penjumlahan dan pengurangan biner. Perkalian biner adalah pengulangan dari penjumlahan; dan juga akan membahas pengurangan biner berdasarkan ide atau gagasan komplemen.

Penjumlahan Biner
Penjumlahan biner tidak begitu beda jauh dengan penjumlahan desimal. Perhatikan contoh penjumlahan desimal antara 167 dan 235!
   1    Ć  7 + 5 = 12, tulis “2” di bawah dan angkat “1” ke atas!
167
235
—- +
402
Seperti bilangan desimal, bilangan biner juga dijumlahkan dengan cara yang sama. Pertama-tama yang harus dicermati adalah aturan pasangan digit biner berikut:
0 + 0 = 0
0 + 1 = 1
1 + 1 = 0   Ć  dan menyimpan 1

sebagai catatan bahwa jumlah dua yang terakhir adalah :
1 + 1 + 1 = 1   Ć  dengan menyimpan 1
Dengan hanya menggunakan penjumlahan-penjumlahan di atas, kita dapat melakukan penjumlahan biner seperti ditunjukkan di bawah ini:
101111                Ć  “simpanan 1” ingat kembali aturan di atas!
01011011           Ć  bilangan biner untuk 91
01001110           Ć  bilangan biner untuk 78
———— +
10101001           Ć  Jumlah dari 91 + 78 = 169
Silahkan pelajari aturan-aturan pasangan digit biner yang telah disebutkan di atas!
Contoh penjumlahan biner yang terdiri dari 5 bilangan!
11101          bilangan 1)
10110          bilangan 2)
  1100           bilangan 3)
11011          bilangan 4)
  1001           bilangan 5)
——– +
untuk menjumlahkannya, kita hitung berdasarkan aturan yang berlaku, dan untuk lebih mudahnya perhitungan dilakukan bertahap!
    11101    bilangan 1)
    10110    bilangan 2)
     ——- +
  110011
      1100    bilangan 3)
     ——- +
  111111  
    11011    bilangan 4)
     ——- +
  011010
      1001    bilangan 5)
     ——- +
1100011     Ć  Jumlah Akhir .
sekarang coba tentukan berapakah bilangan 1,2,3,4 dan 5! Apakah memang perhitungan di atas sudah benar?
Pengurangan Biner
Pengurangan bilangan desimal 73426 – 9185 akan menghasilkan:
73426        Ć  lihat! Angka 7 dan angka 4 dikurangi dengan 1
  9185        Ć  digit desimal pengurang.
——— -
64241          Ć  Hasil pengurangan akhir .
Bentuk Umum pengurangan :
0 – 0 = 0
1 – 0 = 0
1 – 1 = 0
0 – 1 = 1   Ć  dengan meminjam ‘1’ dari digit disebelah kirinya!
Untuk pengurangan biner dapat dilakukan dengan cara yang sama. Coba perhatikan bentuk pengurangan berikut:
1111011    Ć  desimal 123
  101001    Ć  desimal   41
——— -
1010010    Ć  desimal 82
Pada contoh di atas tidak terjadi “konsep peminjaman”. Perhatikan contoh berikut!
      0              Ć  kolom ke-3 sudah menjadi ‘0’, sudah dipinjam!
111101        Ć  desimal 61
  10010        Ć  desimal 18
 ———— -
101011        Ć  Hasil pengurangan akhir 43 .
Pada soal yang kedua ini kita pinjam ‘1’ dari kolom 3, karena ada selisih 0-1 pada kolom ke-2. Lihat Bentuk Umum!
7999          Ć  hasil pinjaman
800046
397261
——— -
402705
Sebagai contoh pengurangan bilangan biner 110001 – 1010 akan diperoleh hasil sebagai berikut:
1100101
      1010
   ———- -
  100111







Komplemen
Salah satu metoda yang dipergunakan dalam pengurangan pada komputer yang ditransformasikan menjadi penjumlahan dengan menggunakan minusradiks-komplemen satu atau komplemen radiks. Pertama-tama kita bahas komplemen di dalam sistem desimal, dimana komplemen-komplemen tersebut secara berurutan disebut dengan komplemen sembilan dan komplemen sepuluh (komplemen di dalam system biner disebut dengan komplemen satu dan komplemen dua). Sekarang yang paling penting adalah menanamkan prinsip ini:
“Komplemen sembilan dari bilangan desimal diperoleh dengan mengurangkan masing-masing digit desimal tersebut ke bilangan 9, sedangkan komplemen sepuluh adalah komplemen sembilan ditambah 1”
Lihat contoh nyatanya!
Bilangan Desimal                123     651     914
Komplemen Sembilan        876     348     085
Komplemen Sepuluh          877     349     086    Ć  ditambah dengan 1!
Perhatikan hubungan diantara bilangan dan komplemennya adalah simetris. Jadi, dengan memperhatikan contoh di atas, komplemen 9 dari 123 adalah 876 dengan simple menjadikan jumlahnya = 9 ( 1+8=9, 2+7=9 , 3+6=9 )!
Sementara komplemen 10 didapat dengan menambahkan 1 pada komplemen 9, berarti 876+1=877!
Pengurangan desimal dapat dilaksanakan dengan penjumlahan komplemen sembilan plus satu, atau penjumlahan dari komplemen sepuluh!
893             893                      893
321             678 (komp. 9)        679 (komp. 10)
—- –            —- +                    —- +
572           1571                   1572
     1
—- +
 572  Ć  angka 1 dihilangkan!
Analogi yang bisa diambil dari perhitungan komplemen di atas adalah, komplemen satu dari bilangan biner diperoleh dengan jalan mengurangkan masing-masing digit biner tersebut ke bilangan 1, atau dengan bahasa sederhananya mengubah masing-masing 0 menjadi 1 atau sebaliknya mengubah masing-masing 1 menjadi 0. Sedangkan komplemen dua adalah satu plus satu. Perhatikan Contoh .!
Bilangan Biner             110011      101010      011100
Komplemen Satu         001100      010101      100011
Komplemen Dua         001101      010110      100100
Pengurangan biner 110001 – 1010 akan kita telaah pada contoh di bawah ini!
110001                110001                110001
001010                110101                110110
——— –                ——— +               ——— +
100111                100111            1100111
dihilangkan!
Alasan teoritis mengapa cara komplemen ini dilakukan, dapat dijelaskan dengan memperhatikan sebuah speedometer mobil/motor dengan empat digit sedang membaca nol!
Sistem Oktal dan Heksa Desimal
Bilangan oktal adalah bilangan dasar 8, sedangkan bilangan heksadesimal atau sering disingkat menjadi heks. ini adalah bilangan berbasis 16. Karena oktal dan heks ini merupakan pangkat dari dua, maka mereka memiliki hubungan yang sangat erat. oktal dan heksadesimal berkaitan dengan prinsip biner!
1. Ubahlah bilangan oktal 63058 menjadi bilangan biner !
6       3       0       5                 Ć  oktal
110   011   000   101             Ć  biner
Note:
  • Masing-masing digit oktal diganti dengan ekivalens 3 bit (biner)
  • Untuk lebih jelasnya lihat tabel Digit Oktal di bawah!
2. Ubahlah bilangan heks 5D9316 menjadi bilangan biner !
            heks   Ć  biner
5       Ć  0101
D       Ć  1101
9       Ć  1001
3       Ć  0011
Note:
  • Jadi bilangan biner untuk heks 5D9316 adalah 0101110110010011
  • Untuk lebih jelasnya lihat tabel Digit Heksadesimal di bawah!
3. Ubahlah bilangan biner 1010100001101 menjadi bilangan oktal !
011   010   100   001   101             Ć  biner
3       2       4       1       5                 Ć  oktal
Note:
  • Kelompokkan bilangan biner yang bersangkutan menjadi 3-bit mulai dari kanan!
4. Ubahlah bilangan biner 101101011011001011 menjadi bilangan heks !
0010          1101          0110          1100          1011 Ć  biner
2                 D                6                 C                B       Ć  heks







Tabel Digit Oktal

Digit Oktal
Ekivalens 3-Bit
0
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111

Tabel Digit Heksadesimal
Digit Desimal
Ekivalens 4-Bit
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A (10)
1010
B (11)
1011
C (12)
1100
D (13)
1101
E (14)
1110
F (15)
1111

Like this:

Konversi Antar Basis Bilangan

Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah:
1. Mengalikan bilangan dengan angka basis bilangannya.

2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.

[sunting] Konversi Biner ke Oktal

Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = ...... (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8) Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.

[sunting] Konversi Biner ke Hexadesimal

Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = ...... (16) Solusi: kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)

[sunting] Konversi Biner ke Desimal

Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ......(10) diuraikan menjadi: (1x24)+(0x23)+(1x22)+(1x21)+(0x20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.

[sunting] Konversi Oktal ke Biner

Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = ...... (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan. Hasil: 101010011(2)

[sunting] Konversi Hexadesimal ke Biner

Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak dua bit. Seperti pada tabel utama. Contoh: 2A(16) = ......(2)
Solusi:
  • A = 1010,
  • 2 = 0010
caranya: A=10
  • 10:2=5(0)-->sisa
  • 5:2=2(1)
  • 2:2=1(0)
  • 1:2=0(1)
ditulis dari hasil akhir
hasil :1010
  • 2:2=1(0)-->sisa
  • 1:2=0(1)
ditulis dari hasil akhir
hasil:010
jadi hasil dan penulisannya 0101010 sebagai catatan angka 0 diawal tidak perlu di tulis.

[sunting] Konversi Desimal ke Hexadesimal

Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal. Contoh: 75(10) = ......(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)

[sunting] Konversi Hexadesimal ke Desimal

Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ......(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai "11". (4x161)+(11x160) = 64 + 11 = 75(10)

[sunting] Konversi Desimal ke Oktal

Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ......(8) Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)
25 : 8 sisa 1 3 -------- 3 hasilnya adalah 31

[sunting] Konversi Oktal ke Desimal

Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini: 31(8) = ......(10) Solusi: (3x81)+(1x80) = 24 + 1 = 25(10)

SISTEM BILANGAN BINER

Sistem bilangan biner merupakan sistem bilangan dengan basis 2. Sistem bilangan  biner menggunakan dua buah simbol yaitu : 0 dan 1. Contoh bilangan biner adalah 1001 yang dapat diartikan dalam sistem bilangan desimal menjadi sebagai berikut :

Position value dalam sistem bilangan biner merupakan perpangkatan dari nilai 2.

Nilai desimal dari sistem bilangan biner juga dapat dicari menggunakan rumus dibawah ini.

Contoh :

Pertambahan Bilangan BINER

Pertambahan pada sistem bilangan biner dilakukan dengan cara yang sama dengan pertambahan pada sistem bilangan desimal. Dasar dari pertambahan sistem bilangan biner dapat dilihat pada gambar dibawah ini.

Contoh pertambahan bilangan BINER :

Pengurangan Bilangan BINER

Pengurangan pada sistem bilangan BINER dilakukan dengan cara yang sama dengan pengurangan sistem bilangan desimal. Dasar dari pengurangan sistem bilangan BINER dapat dilihat pada gambar dibawah ini.

Contoh pengurangan bilangan biner:
Pengurangan bilangan biner juga dapat dilakukan dengan menggunakan Komplemen. Terdapat dua macam komplemen pada sistem bilangan biner yaitu : Komplemen 1 (1s complement) dan Komplemen 2 (2s complement).
Contoh pengurangan bilangan biner menggunakan komplemen 1 :

Komplemen 1 pada sistem bilangan biner dilakukan dengan mengurangkan setiap bit dengan nilai 1, atau dengan cara mengubah setiap bit 0 menjadi 1 dan setiap bit 1 menjadi 0. Dengan komplemen 1, hasil digit paling kiri dipindahkan untuk ditambahkan pada bit paling kanan.
Contoh pengurangan bilangan biner menggunakan komplemen 2 :

Komplemen 2 adalah hasil dari komplemen 1 ditambah 1, misalnya komplemen 2 dari bilangan BINER 10110 adalah 01010 (dari komplemen 1 yaitu 01001 ditambah 1). Dengan menggunakan komplemen 2, hasil digit paling kanan dibuang, tidak digunakan.


Perkalian Bilangan BINER

Perkalian bilangan biner dilakukan dengan cara yang sama dengan perkalian pada sistem bilangan desimal. Dasar perkalian untuk masing-masing digit bilangan biner dapat dilihat pada gambar dibawah ini :

Contoh perkalian bilangan BINER :

Perhatikan, ada dua keadaan dalam perkalian bilangan biner, jika pengali adalah bilangan 1 maka cukup disalin saja, jika pengali adalah bilangan 0 maka hasilnya semuanya 0.


Pembagian Bilangan Biner

Pembagian bilangan biner juga dilakukan dengan cara yang sama dengan pembagian bilangan desimal. Pembagian dengan 0 tidak mempunyai arti, sehingga dasar untuk pembagian menjadi seperti dibawah ini.

Contoh pembagian pada bilangan biner :

Kata kunci: modul tkj
Sebelumnya: Desai LAN
Selanjutnya :
Resistor
Pada kesempatan ini, saya ingin coba menjabarkan tahap2 sederhana proses konversi bilangan desimal, biner, oktal dan heksadesimal. pertama x hal yang harus dilakukan, pergi kewarung buat beli rokok, sediakan teh manis/kopi, tarik nafas yg dalam, ambil aba2 untuk melakukan perang dengan angka 0 dan 1
Bilangan desimal adalah bilangan yang menggunakan 10 angka mulai 0 sampai 9 berturut2. Setelah angka 9, maka angka berikutnya adalah 10, 11, 12 dan seterusnya. Bilangan desimal disebut juga bilangan berbasis 10. Contoh penulisan bilangan desimal : 1710. Ingat, desimal berbasis 10, maka angka 10-lah yang menjadi subscript pada penulisan bilangan desimal.
Bilangan biner adalah bilangan yang hanya menggunakan 2 angka, yaitu 0 dan 1. Bilangan biner juga disebut bilangan berbasis 2. Setiap bilangan pada bilangan biner disebut bit, dimana 1 byte = 8 bit.  Contoh penulisan : 1101112.

Bilangan oktal adalah bilangan berbasis 8, yang menggunakan angka 0 sampai 7. Contoh penulisan : 178.
Bilangan heksadesimal, atau bilangan heksa, atau bilangan basis 16, menggunakan 16  buah simbol, mulai dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F merupakan simbol untuk 10 sampai 15. Contoh penulisan : C516.
Hmm.. Sepertinya prolognya sudah cukup. Lanjut ke proses kalkulasi…

Desimal ke binner
Saya langsung saja ambil sebuah contoh bilangan desimal yang akan dikonversi ke biner. Setelah itu, akan saya lakukan konversi masing2 bilangan desimal, biner, oktal dan heksadesimal.
Misalkan bilangan desimal yang ingin saya konversi adalah 2510.
Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :
25 : 2 = 12,5
Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :
25 : 2 = 12 sisa 1.    —–> Sampai disini masih mengerti kan?
Langkah selanjutnya adalah membagi angka 12 tersebut dengan 2 lagi. Hasilnya sebagai berikut :
12 : 2 = 6 sisa 0.      —–> Ingat, selalu tulis sisanya.
Proses tersebut dilanjutkan sampai angka yang hendak dibagi adalah 0, sebagai berikut :

25 : 2 = 12 sisa 1.
12 : 2 = 6 sisa 0.
6 : 2 = 3 sisa 0.
3 : 2 = 1 sisa 1.
1 : 2 = 0 sisa 1.
0 : 2 = 0 sisa 0…. (end)
Nah, setelah didapat perhitungan tadi, pertanyaan berikutnya adalah, hasil konversinya yang mana? Ya, hasil konversinya adalah urutan seluruh sisa-sisa perhitungan telah diperoleh, dimulai dari bawah ke atas.
Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012. Sip?

Desimal ke oktal
Lanjut…..sekarang saya akan menjelaskan konversi bilangan desimal ke oktal.
Proses konversinya mirip dengan proses konversi desimal ke biner, hanya saja kali ini pembaginya adalah 8. Misalkan angka yang ingin saya konversi adalah 3310. Maka :
33 : 8 = 4 sisa 1.
4 : 8 = 0 sisa 4.
0 : 8 = 0 sisa 0….(end)
Hasilnya? Coba tebak…418!!!

Desimal ke heksadesimal
Sekarang tiba waktunya untuk mengajarkan proses konversi desimal ke heksadesimal
Seperti biasa, langsung saja ke contoh. Hehe…
Misalkan bilangan desimal yang ingin saya ubah adalah 24310. Untuk menghitung proses konversinya, caranya sama saja dengan proses konversi desimal ke biner, hanya saja kali ini angka pembaginya adalah 16. Maka :
243 : 16 = 15 sisa 3.
15 : 16 = 0 sisa F.      —-> ingat, 15 diganti jadi F..
0 :  16 = 0 sisa 0….(end)
Nah, maka hasil konversinya adalah F316. Mudah, bukan?

Fiuh..Lanjut lagi…
Biner ke desimal
Sekarang kita beralih ke konversi bilangan biner ke desimal. Proses konversi bilangan biner ke bilangan desimal adalah proses perkalian setiap bit pada bilangan biner dengan perpangkatan 2, dimana perpangkatan 2 tersebut berurut dari kanan ke kiri bit bernilai 20 sampai 2n.
Langsung saja saya ambil contoh bilangan yang merupakan hasil perhitungan di atas, yaitu 110012. Misalkan bilangan tersebut saya ubah posisinya mulai dari kanan ke kiri menjadi seperti ini.
1
0
0
1
1
Nah, saatnya mengalikan setiap bit dengan perpangkatan 2. Ingat, perpangkatan 2 tersebut berurut mulai dari 20 sampai 2n, untuk setiap bit mulai dari kanan ke kiri. Maka :
1     ——>    1 x 20 = 1
0     ——>    0 x 21 = 0
0     ——>    0 x 22 = 0
1     ——>    1 x 23 = 8
1     ——>    1 x 24 = 16 —> perhatikan nilai perpangkatan 2 nya semakin ke bawah semakin besar
Maka hasilnya adalah 1 + 0 + 0 + 8 + 16 = 2510.
Nah, bandingkan hasil ini dengan angka desimal yang saya ubah ke biner di awal tadi. Sama bukan?

Biner ke oktal
Sudah ini, sudah itu, sekarang….nah, konversi bilangan biner ke oktal. hehe…siap?
Untuk merubah bilangan biner ke bilangan oktal, perlu diperhatikan bahwa setiap bilangan oktal mewakili 3 bit dari bilangan biner. Maka jika kita memiliki bilangan biner 1101112 yang ingin dikonversi ke bilangan oktal, langkah pertama yang kita lakukan adalah memilah-milah bilangan biner tersebut, setiap bagian 3 bit, mulai dari kanan ke kiri, sehingga menjadi seperti berikut :
110                 dan               111
Sengaja saya buat agak berjarak, supaya lebih mudah dimengerti. Nah, setelah dilakukan proses pemilah2an seperti ini, dilakukan proses konversi ke desimal terlebih dahulu secara terpisah. 110 dikonversi menjadi 6, dan 111 dikonversi menjadi 7. Hasilnya kemudian digabungkan, menjadi 678, yang merupakan bilangan oktal dari 1101112… 
“Tapi, itu kan kebetulan bilangan binernya pas 6 bit. Jadi dipilah2 3 pun masih pas. Gimana kalau bilangan binernya, contohnya, 5 bit?” Hehe…Gampang..Contohnya 110012. 5 bit kan? Sebenarnya pemilah2an itu dimulai dari kanan ke kiri. Jadi hasilnya 11 dan 001. Ini kan sebenarnya sudah bisa masing2 diubah ke dalam bentuk desimal. Tapi kalau mau menambah kenyamanan di mata, tambahin aja 1 angka 0 di depannya. Jadi 0110012. Tidak akan merubah hasil perhitungan kok. Tinggal dipilah2 seperti tadi. Okeh?

Biner ke heksadesimal
Selanjutnya adalah konversi bilangan biner ke heksadesimal.
Hmm…sebagai contoh, misalnya saya ingin ubah 111000102 ke bentuk heksadesimal. Proses konversinya juga tidak begitu rumit, hanya tinggal memilahkan bit2 tersebut menjadi kelompok2 4 bit. Pemilahan dimulai dari kanan ke kiri, sehingga hasilnya sbb :
1110            dan           0010
Nah, coba lihat bit2 tersebut. Konversilah bit2 tersebut ke desimal terlebih dahulu satu persatu, sehingga didapat :
1110 = 14    dan           0010 = 2
Nah, ingat kalau 14 itu dilambangkan apa di heksadesimal? Ya, 14 dilambangkan dengan E16.
Dengan demikian, hasil konversinya adalah E216.
Seperti tadi juga, gimana kalau bilangan binernya tidak berjumlah 8  bit? Contohnya 1101012? Yaa…Seperti tadi juga, tambahin aja 0 di depannya. Tidak akan memberi pengaruh apa2 kok ke hasilnya. Jadi setelah ditambah menjadi 001101012. Selanjutnya, sudah gampang kan?

Oktal ke desimal
Selanjutnya, konversi bilangan oktal ke desimal. Hal ini tidak terlalu sulit. Tinggal kalikan saja setiap bilangan dengan perpangkatan 8. Contoh, bilangan oktal yang akan dikonversi adalah 718. Maka susunannya saya buat menjadi demikian :
1
7
dan proses perkaliannya sbb :
1 x 80 = 1
7 x 81 = 56
Maka hasilnya adalah penjumlahan 1 + 56 = 5710.

Oktal ke biner
Habis konversi oktal ke desimal, maka saat ini giliran oktal ke biner. Hehe..Langsung ke contoh. Misalkan saya ingin mengubah bilangan oktal 578 ke biner. Maka langkah yang saya lakukan adalah melakukan proses konversi setiap bilangan tersebut masing2 ke 3 bit bilangan biner. Nah, angka 5 jika dikonversi ke biner menjadi….? 1012. Sip. Nah, 7, jika dikonversi ke biner menjadi…? 1112. Mantap. Maka hasilnya adalah 1011112. Jamin benar deh….

Oktal ke heksadesimal
Hmm…berarti…sekarang giliran konversi oktal ke heksadesimal.Untuk konversi oktal ke heksadesimal, kita akan membutuhkan perantara, yaitu bilangan biner. Maksudnya? Maksudnya adalah kita konversi dulu oktal ke biner, lalu konversikan nilai biner tersebut ke nilai heksadesimalnya. Nah, baik yang konversi oktal ke biner maupun biner ke heksadesimal kan udah dijelaskan. Coba buktikan, bahwa bilangan oktal 728 jika dikonversi ke heksadesimal menjadi 3A16. Bisa kan? Bisa dong…

Heksadesimal ke desimal
Selanjutnya adalah konversi bilangan heksadesimal ke desimal.Untuk proses konversi ini, caranya sama saja dengan proses konversi biner ke desimal, hanya saja kali ini perpangkatan yang digunakan adalah perpangkatan 16, bukan perpangkatan 2. Sebagai contoh, saya akan melakukan konversi bilangan heksa C816 ke bilangan desimal. Maka saya ubah dulu susunan bilangan heksa tersebut, mulai dari kanan ke kiri, sehingga menjadi sebagai berikut :
8
C
dan kemudian dilakukan proses perkalian dengan perpangkatan 16, sebagai berikut :
8 x 160 = 8
C x 161 = 192     ——> ingat, C16 merupakan lambang dari 1210
Maka diperolehlah hasil konversinya bernilai 8 + 192 = 20010.

Heksadesimal ke biner
Tutorial berikutnya, konversi dari heksadesimal ke biner.
Dalam proses konversi heksadesimal ke biner, setiap simbol dalam heksadesimal mewakili 4 bit dari biner. Misalnya saya ingin melakukan proses konversi bilangan heksa B716 ke bilangan biner. Maka setiap simbol di bilangan heksa tersebut saya konversi terpisah ke biner. Ingat, B16 merupakan simbol untuk angka desimal 1110. Nah, desimal 1110 jika dikonversi ke biner menjadi 10112, sedangkan desimal 710 jika dikonversi ke biner menjadi 01112. Maka bilangan binernya adalah 101101112, atau kalau dibuat ilustrasinya seperti berikut ini :

B                         7       —-> bentuk heksa
11                       7       —-> bentuk desimal
1011                0111  —-> bentuk biner
Hasilnya disatukan, sehingga menjadi 101101112. Understood?


Heksadesimal ke oktal
Last but not least, konversi heksadesimal ke oktal.
Nah, sama seperti konversi oktal ke heksadesimal, kita membutuhkan bantuan bilangan biner. Lakukan terlebih dahulu konversi heksadesimal ke biner, lalu konversikan nilai biner tersebut ke oktal. Sebagai latihan, buktikan bahwa nilai heksadesimal E716 jika dikonversi ke oktal menjadi 3478

sumber : http://guztiajisabdani.blogspot.com/

0 komentar :

Posting Komentar